• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generating and Analyzing Synthetic Workloads using Iterative Distillation

    Thumbnail
    View/Open
    kurmas_zachary_A_200405_phd.pdf (830.1Kb)
    Date
    2004-05-14
    Author
    Kurmas, Zachary Alan
    Metadata
    Show full item record
    Abstract
    The exponential growth in computing capability and use has produced a high demand for large, high-performance storage systems. Unfortunately, advances in storage system research have been limited by (1) a lack of evaluation workloads, and (2) a limited understanding of the interactions between workloads and storage systems. We have developed a tool, the Distiller that helps address both limitations. Our thesis is as follows: Given a storage system and a workload for that system, one can automatically identify a set of workload characteristics that describes a set of synthetic workloads with the same performance as the workload they model. These representative synthetic workloads increase the number of available workloads with which storage systems can be evaluated. More importantly, the characteristics also identify those workload properties that affect disk array performance, thereby highlighting the interactions between workloads and storage systems. This dissertation presents the design and evaluation of the Distiller. Specifically, our contributions are as follows. (1) We demonstrate that the Distiller finds synthetic workloads with at most 10% error for six out of the eight workloads we tested. (2) We also find that all of the potential error metrics we use to compare workload performance have limitations. Additionally, although the internal threshold that determines which attributes the Distiller chooses has a small effect on the accuracy of the final synthetic workloads, it has a large effect on the Distiller's running time. Similarly, (3) we find that we can reduce the precision with which we measure attributes and only moderately reduce the resulting synthetic workload's accuracy. Finally, (4) we show how to use the information contained in the chosen attributes to predict the performance effects of modifying the storage system's prefetch length and stripe unit size.
    URI
    http://hdl.handle.net/1853/4985
    Collections
    • College of Computing Theses and Dissertations [1156]
    • Georgia Tech Theses and Dissertations [23406]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology