• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inverse opal scaffolds and photoacoustic microscopy for regenerative medicine

    Thumbnail
    View/Open
    ZHANG-DISSERTATION-2013.pdf (6.525Mb)
    zhang_yu_fall2013_phd.docx (11.07Mb)
    Date
    2013-08-06
    Author
    Zhang, Yu
    Metadata
    Show full item record
    Abstract
    This research centers on the fabrication, characterization, and engineering of inverse opal scaffolds, a novel class of three-dimensional (3D) porous scaffolds made of biocompatible and biodegradable polymers, for applications in tissue engineering and regenerative medicine. The unique features of an inverse opal scaffold include a highly ordered array of pores, uniform and finely tunable pore sizes, high interconnectivity, and great reproducibility. The first part of this work focuses on the fabrication and functionalization of inverse opal scaffolds based on poly(D,L-lactic-co-glycolic acid) (PLGA), a biodegradable material approved by the U.S. Food and Drug Administration (FDA). The advantages of the PLGA inverse opal scaffolds are also demonstrated by comparing with their counterparts with spherical but non-uniform pores and poor interconnectivity. The second part of this work shows two examples where the PLGA inverse opal scaffolds were successfully used as a well-defined system to investigate the effect of pore size of a 3D porous scaffold on the behavior of cell and tissue growth. Specifically, I have demonstrated that i) the differentiation of progenitor cells in vitro was dependent on the pore size of PLGA-based scaffolds and the behavior of the cells was determined by the size of individual pores where the cells resided in, and ii) the neovascularization process in vivo could be directly manipulated by controlling a combination of pore and window sizes when they were applied to a mouse model. The last part of this work deals with the novel application of photoacoustic microscopy (PAM), a volumetric imaging modality recently developed, to tissue engineering and regenerative medicine, in the context of non-invasive imaging and quantification of cells and tissues grown in PLGA inverse opal scaffolds, both in vitro and in vivo. Furthermore, the capability of PAM to monitor and quantitatively analyze the degradation of the scaffolds themselves was also demonstrated.
    URI
    http://hdl.handle.net/1853/50231
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • Department of Biomedical Engineering Theses and Dissertations [509]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology