• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A global search algorithm for phase transition pathways in computer-aided nano-design

    Thumbnail
    View/Open
    HE-THESIS-2013.pdf (2.274Mb)
    Date
    2013-09-17
    Author
    He, Lijuan
    Metadata
    Show full item record
    Abstract
    One of the most important design issues for phase change materials is to engineer the phase transition process. The challenge of accurately predicting a phase transition is estimating the true value of transition rate, which is determined by the saddle point with the minimum energy barrier between stable states on the potential energy surface (PES). In this thesis, a new algorithm for searching the minimum energy path (MEP) is presented. The new algorithm is able to locate both the saddle point and local minima simultaneously. Therefore no prior knowledge of the precise positions for the reactant and product on the PES is needed. Unlike existing pathway search methods, the algorithm is able to search multiple transition paths on the PES simultaneously, which gives us a more comprehensive view of the energy landscape than searching individual ones. In this method, a Bézier curve is used to represent each transition path. During the searching process, the reactant and product states are located by minimizing the two end control points of the curve, while the shape of the transition pathway is refined by moving the intermediate control points of the curve in the conjugate directions. A curve subdivision scheme is developed so that multiple transitions paths can be located. The algorithm is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator potential, and PESs defined by Rastrigin function and Schwefel function.
    URI
    http://hdl.handle.net/1853/50248
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Mechanical Engineering Theses and Dissertations [3831]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology