Show simple item record

dc.contributor.advisorChapman, Michael
dc.contributor.authorDe Palatis, Michael V.
dc.date.accessioned2014-01-13T16:20:42Z
dc.date.available2014-01-13T16:20:42Z
dc.date.created2013-12
dc.date.issued2013-08-20
dc.date.submittedDecember 2013
dc.identifier.urihttp://hdl.handle.net/1853/50251
dc.description.abstractIon traps are an incredibly versatile tool which have many applications throughout the physical sciences, including such diverse topics as mass spectrometry, precision frequency metrology, tests of fundamental physics, and quantum computing. In this thesis, experiments are presented which involve trapping and measuring properties of Th³⁺. Th³⁺ ions are of unique interest in part because they are a promising platform for studying an unusually low-lying nuclear transition in the 229Th nucleus which could eventually be used as an exceptional optical clock. Here, experiments to measure electronic lifetimes of Th³⁺ are described. A second experimental topic explores the production of sympathetically cooled molecular ions. The study of cold molecular ions has a number of applications, some of which include spectroscopy to aid the study of astrophysical objects, precision tests of quantum electrodynamics predictions, and the study of chemical reactions in the quantum regime. The experiments presented here involve the production of barium monohalide ions, BaX⁺ (X = F, Cl, Br). This type of molecular ion proves to be particularly promising for cooling to the rovibrational ground state. The method used for producing BaX⁺ ions involves reactions between cold, trapped Ba⁺ ions and neutral gas phase reactants at room temperature. The Ba⁺ ion reaction experiments presented in this thesis characterize these reactions for producing Coulomb crystals composed of laser cooled Ba⁺ ions and sympathetically cooled BaX⁺ ions.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectIon traps
dc.subjectAtomic physics
dc.subjectReactions
dc.subjectLaser cooling
dc.subjectBarium
dc.subjectThorium
dc.subject.lcshTrapped ions
dc.subject.lcshIons
dc.subject.lcshMolecular structure
dc.subject.lcshHalides
dc.subject.lcshBarium
dc.subject.lcshThorium
dc.titleProduction of cold barium monohalide ions
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentPhysics
thesis.degree.levelDoctoral
dc.contributor.committeeMemberBrown, Kenneth
dc.contributor.committeeMemberSchatz, Michael
dc.contributor.committeeMemberFirst, Phillip
dc.contributor.committeeMemberSherrill, David
dc.date.updated2014-01-13T16:20:42Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record