Show simple item record

dc.contributor.advisorWills, Linda M.
dc.contributor.advisorWills, D. Scott
dc.contributor.authorForsthoefel, Dana
dc.date.accessioned2014-01-13T16:22:05Z
dc.date.available2014-01-13T16:22:05Z
dc.date.created2013-12
dc.date.issued2013-08-29
dc.date.submittedDecember 2013
dc.identifier.urihttp://hdl.handle.net/1853/50285
dc.description.abstractAs demand for real-time image processing increases, the need to improve the efficiency of image processing systems is growing. The process of image segmentation is often used in preprocessing stages of computer vision systems to reduce image data and increase processing efficiency. This dissertation introduces a novel image segmentation approach known as leap segmentation, which applies a flexible definition of adjacency to allow groupings of pixels into segments which need not be spatially contiguous and thus can more accurately correspond to large surfaces in the scene. Experiments show that leap segmentation correctly preserves an average of 20% more original scene pixels than traditional approaches, while using the same number of segments, and significantly improves execution performance (executing 10x - 15x faster than leading approaches). Further, leap segmentation is shown to improve the efficiency of a high-level vision application for scene layout analysis within 3D scene reconstruction. The benefits of applying image segmentation in preprocessing are not limited to single-frame image processing. Segmentation is also often applied in the preprocessing stages of video analysis applications. In the second contribution of this dissertation, the fast, single-frame leap segmentation approach is extended into the temporal domain to develop a highly-efficient method for multiple-frame segmentation, called video leap segmentation. This approach is evaluated for use on mobile platforms where processing speed is critical using moving-camera traffic sequences captured on busy, multi-lane highways. Video leap segmentation accurately tracks segments across temporal bounds, maintaining temporal coherence between the input sequence frames. It is shown that video leap segmentation can be applied with high accuracy to the task of salient segment transformation detection for alerting drivers to important scene changes that may affect future steering decisions. Finally, while research efforts in the field of image segmentation have often recognized the need for efficient implementations for real-time processing, many of today’s leading image segmentation approaches exhibit processing times which exceed their camera frame periods, making them infeasible for use in real-time applications. The third research contribution of this dissertation focuses on developing fast implementations of the single-frame leap segmentation approach for use on both single-core and multi-core platforms as well as on both high-performance and resource-constrained systems. While the design of leap segmentation lends itself to efficient implementations, the efficiency achieved by this algorithm, as in any algorithm, is can be improved with careful implementation optimizations. The leap segmentation approach is analyzed in detail and highly optimized implementations of the approach are presented with in-depth studies, ranging from storage considerations to realizing parallel processing potential. The final implementations of leap segmentation for both serial and parallel platforms are shown to achieve real-time frame rates even when processing very high resolution input images. Leap segmentation’s accuracy and speed make it a highly competitive alternative to today’s leading segmentation approaches for modern, real-time computer vision systems.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectComputer vision
dc.subjectImage segmentation
dc.subjectReal-time and embedded systems
dc.subject.lcshImage segmentation
dc.subject.lcshComputer vision
dc.titleLeap segmentation in mobile image and video analysis
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentElectrical and Computer Engineering
thesis.degree.levelDoctoral
dc.contributor.committeeMemberKim, Jongman
dc.contributor.committeeMemberLanterman, Aaron
dc.contributor.committeeMemberBlough, Doug
dc.contributor.committeeMemberThomaz, Andrea
dc.date.updated2014-01-13T16:22:06Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record