Show simple item record

dc.contributor.advisorSinghose, William
dc.contributor.authorPeng, Chen-Chih
dc.date.accessioned2014-01-13T16:49:04Z
dc.date.available2014-01-13T16:49:04Z
dc.date.created2013-12
dc.date.issued2013-11-18
dc.date.submittedDecember 2013
dc.identifier.urihttp://hdl.handle.net/1853/50343
dc.description.abstractCranes are widely used in material-handling and transportation applications, e.g. in shipyards, construction sites, and warehouses. As they are critical to the economic vitality of modern-day industries, improving crane performance and ease of use are important contributors to industrial productivity, low production costs, and workplace safety. In a typical crane operation, a payload is lifted, moved to its destination, and then lowered into place. This dissertation aims to improve crane performance and reduce task difficulty for the human operator in the movements mentioned above, namely: 1) Moving payloads laterally in the horizontal plane, 2) Lifting payloads off the ground, and 3) Lowering or laying down payloads on the ground. The design of a novel and intuitive human-machine control interface is the focus for improving operations that involve moving payloads laterally. The interface allows operators to drive a crane by simply moving a hand-held device through the desired path. The position of the device, which is tracked by sensors, is used to generate command signals to drive the crane. This command is then input-shaped such that payload oscillations are greatly reduced, making it much easier for the operator to drive the crane. Several facets of this crane control method are examined, such as control structure and stability, usability contexts, modes of operation, and quantitative measures (by means of human operator studies) of performance improvements over standard crane control interfaces. Lifting up a payload can be difficult for the operator, if the hoist is not properly centered above the payload. In these potentially dangerous and costly ``off-centered" lifts, the payload may slide on the ground and/or oscillate in the air after it is hoisted. Newtonian and Coulomb friction models that focus on the stiction-sliding-separation contact dynamics are derived and experimentally verified to study off-centered lifts. Then, with the goal of aiding operators during lift operations, simple but practical, self-centering solutions are proposed and implemented. Laying down or lowering a payload to the ground can also be challenging for operators in certain situations. For example, laying down a long, slender payload from a vertical orientation in the air, to a horizontal position on a flat surface. If the operator does not properly coordinate the motions of the crane in the vertical and horizontal directions simultaneously, then the potential hazards that may occur during these operations include: 1) slipping of the pivot about which the payload rotates, leading to sudden and dangerous payload movements; and 2) excessive hoist cable angles that lead to ``side-pull" problems. Newtonian and Coulomb friction models are derived to describe this lay-down scenario. The forces and motions experienced by the payload are then used to determine the motion trajectories that the crane and payload should follow to execute a successful lay-down maneuver. Finally, a special chapter is included to address the oscillation control of systems that have on-off nonlinear actuators, such as cranes powered by relay-controlled circuits. Due to their simplicity, ruggedness, and long service life, this type of crane can be commonly found in older factories or in applications where precise motion control is not a strict requirement. However, controlling payload oscillations on this type of crane is challenging for two reasons: 1) Relays that can only be turned on or off allow for only limited control over the crane velocity; and 2) These cranes typically have nonlinear asymmetrical acceleration and deceleration properties. Methods are derived for determining the relay switch-times that move single-pendulum and double-pendulum payloads with low residual oscillations.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectCranes
dc.subjectInput shaping
dc.subjectOscillation
dc.subjectMotion control
dc.subjectManufacturing
dc.subjectAutomation
dc.subjectRelays
dc.subjectFriction
dc.subjectDynamics
dc.subjectNonlinear feedback control
dc.subject.lcshCranes, derricks, etc.
dc.subject.lcshHuman-machine systems
dc.titleMethods for improving crane performance and ease of use
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentMechanical Engineering
thesis.degree.levelDoctoral
dc.contributor.committeeMemberFerri, Aldo
dc.contributor.committeeMemberLi, Wayne
dc.contributor.committeeMemberFrakes, David
dc.contributor.committeeMemberCostello, Mark
dc.date.updated2014-01-13T16:49:04Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record