• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fully non-contact, air-coupled generation and detection of ultrasound in concrete for nondestructive testing

    Thumbnail
    View/Open
    SCHEMPP-THESIS-2013.pdf (777.2Kb)
    Date
    2013-11-20
    Author
    Schempp, Fabian
    Metadata
    Show full item record
    Abstract
    It is well known that liquid coupling agents, which are commonly used in conventional ultrasonic testing to couple an ultrasonic transducer to a solid specimen, cause a number of problems including inconsistency in results and slowness of the inspection. This is especially true when the specimen surface is rough, such as those in field concrete structures; here the solution involves time-consuming surface preparation to polish every single point of inspection, making it impractical to inspect field structures with conventional, contact methods. To address this issue, this thesis proposes a new, fully non-contact, air-coupled measurement setup in the mid to high ultrasonic frequencies (50-150 kHz). This advanced setup and measurement technique is evaluated by calculating the signal to noise ratio for different numbers of signal averages. In addition, the effect of the lift-off distance of the transducer over the sample is also investigated. Ultrasonic waves are generated and detected in this frequency range with a sufficiently high signal to noise ratio (SNR), which enables performing a fast scan with a small number of signal averages. Using this setup, phase velocity and attenuation of Rayleigh surface waves in a concrete specimen are first measured. Then, the air coupled ultrasound technique is used to detect dicontinuities such as cracks at a concrete joint and reinforcement bars in a concrete block. Also, the capability of the proposed technique for measuring depths of surface-breaking cracks using air-coupled generated Rayleigh waves is demonstrated. Since this measurement setup directly generates Rayleigh waves, most of the disadvantages in the techniques based on the impact-echo method can be avoided and thus data processing is much simpler than that in the impact-echo based techniques. The results of the measurements show that this setup is highly promising and a big advancement towards the rapid ultrasonic nondestructive testing on large-scale field concrete structures.
    URI
    http://hdl.handle.net/1853/50396
    Collections
    • Georgia Tech Theses and Dissertations [22402]
    • School of Civil and Environmental Engineering Theses and Dissertations [1646]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology