• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Storage and aggregation for fast analytics systems

    Thumbnail
    View/Open
    AMUR-DISSERTATION-2013.pdf (2.481Mb)
    Date
    2013-11-18
    Author
    Amur, Hrishikesh
    Metadata
    Show full item record
    Abstract
    Computing in the last decade has been characterized by the rise of data- intensive scalable computing (DISC) systems. In particular, recent years have wit- nessed a rapid growth in the popularity of fast analytics systems. These systems exemplify a trend where queries that previously involved batch-processing (e.g., run- ning a MapReduce job) on a massive amount of data, are increasingly expected to be answered in near real-time with low latency. This dissertation addresses the problem that existing designs for various components used in the software stack for DISC sys- tems do not meet the requirements demanded by fast analytics applications. In this work, we focus specifically on two components: 1. Key-value storage: Recent work has focused primarily on supporting reads with high throughput and low latency. However, fast analytics applications require that new data entering the system (e.g., new web-pages crawled, currently trend- ing topics) be quickly made available to queries and analysis codes. This means that along with supporting reads efficiently, these systems must also support writes with high throughput, which current systems fail to do. In the first part of this work, we solve this problem by proposing a new key-value storage system – called the WriteBuffer (WB) Tree – that provides up to 30× higher write per- formance and similar read performance compared to current high-performance systems. 2. GroupBy-Aggregate: Fast analytics systems require support for fast, incre- mental aggregation of data for with low-latency access to results. Existing techniques are memory-inefficient and do not support incremental aggregation efficiently when aggregate data overflows to disk. In the second part of this dis- sertation, we propose a new data structure called the Compressed Buffer Tree (CBT) to implement memory-efficient in-memory aggregation. We also show how the WB Tree can be modified to support efficient disk-based aggregation.
    URI
    http://hdl.handle.net/1853/50397
    Collections
    • College of Computing Theses and Dissertations [1071]
    • Georgia Tech Theses and Dissertations [22401]
    • School of Computer Science Theses and Dissertations [79]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology