• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Incident Detection Algorithm Based On a Discrete State Propagation Model of Traffic Flow

    Thumbnail
    View/Open
    guin_angshuman_200407_phd.pdf (8.602Mb)
    Date
    2004-07-09
    Author
    Guin, Angshuman
    Metadata
    Show full item record
    Abstract
    Automatic Incident Detection Algorithms (AIDA) have been part of freeway management system software from the beginnings of ITS deployment. These algorithms introduce the capability of detecting incidents on freeways using traffic operations data. Over the years, several approaches to incident detection have been studied and tested. However, the size and scope of the urban transportation networks under direct monitoring by transportation management centers are growing at a faster rate than are staffing levels and center resources. This has entailed a renewed emphasis on the need for reliability and accuracy of AIDA functionality. This study investigates a new approach to incident detection that promises a significant improvement in operational performance. This algorithm is formulated on the premise that the current conditions facilitate the prediction of future traffic conditions, and deviations of observations from the predictions beyond a calibrated level of tolerance indicate the occurrence of incidents. This algorithm is specifically designed for easy implementation and calibration at any site. Offline tests with data from the Georgia-Navigator system indicate that this algorithm realizes a substantial improvement over the conventional incident detection algorithms. This algorithm not only achieves a low rate of false alarms but also ensures a high detection rate.
    URI
    http://hdl.handle.net/1853/5040
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology