• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An analytical approach to real-time linearization of a gas turbine engine model

    Thumbnail
    View/Open
    CHUNG-DISSERTATION-2013.pdf (4.028Mb)
    Date
    2013-06-28
    Author
    Chung, Gi Yun
    Metadata
    Show full item record
    Abstract
    A recent development in the design of control system for a jet engine is to use a suitable, fast and accurate model running on board. Development of linear models is particularly important as most engine control designs are based on linear control theory. Engine control performance can be significantly improved by increasing the accuracy of the developed model. Current state-of-the-art is to use piecewise linear models at selected equilibrium conditions for the development of set point controllers, followed by scheduling of resulting controller gains as a function of one or more of the system states. However, arriving at an effective gain scheduler that can accommodate fast transients covering a wide range of operating points can become quite complex and involved, thus resulting in a sacrifice on controller performance for its simplicity. This thesis presents a methodology for developing a control oriented analytical linear model of a jet engine at both equilibrium and off-equilibrium conditions. This scheme requires a nonlinear engine model to run onboard in real time. The off-equilibrium analytical linear model provides improved accuracy and flexibility over the commonly used piecewise linear models developed using numerical perturbations. Linear coefficients are obtained by evaluating, at current conditions, analytical expressions which result from differentiation of simplified nonlinear expressions. Residualization of the fast dynamics states are utilized since the fast dynamics are typically outside of the primary control bandwidth. Analytical expressions based on the physics of the aerothermodynamic processes of a gas turbine engine facilitate a systematic approach to the analysis and synthesis of model based controllers. In addition, the use of analytical expressions reduces the computational effort, enabling linearization in real time at both equilibrium and off-equilibrium conditions for a more accurate capture of system dynamics during aggressive transient maneuvers. The methodology is formulated and applied to a separate flow twin-spool turbofan engine model in the Numerical Propulsion System Simulation (NPSS) platform. The fidelity of linear model is examined by validating against a detailed nonlinear engine model using time domain response, the normalized additive uncertainty and the nu-gap metric. The effects of each simplifying assumptions, which are crucial to the linear model development, on the fidelity of the linear model are analyzed in detail. A case study is performed to investigate the case when the current state (including both slow and fast states) of the system is not readily available from the nonlinear simulation model. Also, a simple model based control is used to illustrate benefits of using the proposed modeling approach.
    URI
    http://hdl.handle.net/1853/50702
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Related items

    Showing items related by title, author, creator and subject.

    • Non-linear factor analysis (NLFA) with feedforward networks performs non-linear data reduction with extraction of linear scores 

      Karrila, Seppo J. (Atlanta, Georgia : the Institute,Georgia Institute of Technology, 2002-02)
    • Linear time invariant approximations of linear time periodic systems for integrated flight and vibration control 

      Lopez, Mark Joseph Santos (Georgia Institute of Technology, 2016-05-23)
      Recent developments in active rotor control have shown significant coupling between flight and vibration control systems which are traditionally designed independently. This coupling results in performance degradation of ...
    • Finding Kernels in Non-Linear Data-Driven CHC Solving 

      Eden, Michael (Georgia Institute of Technology, 2018-08)
      Program verification has seen a lot of progress, but its still unable to automatically find proofs for industry programs. This paper builds on data-driven approaches from previous work [11] to provide a more robust automatic ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology