• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functional genomics of cardiovascular disease risk

    Thumbnail
    View/Open
    KIM-THESIS-2014.pdf (898.3Kb)
    Date
    2013-07-03
    Author
    Kim, Jin Hee
    Metadata
    Show full item record
    Abstract
    Understanding variability of heath status is highly likely to be an important component of personalized medicine to predict health status of individuals and to promote personal health. Evidences of Genome Wide Association Study and gene expression study indicating that genetic factors affect the risk susceptibility of individuals have suggested adding genetic factors as a component of health status measurements. In order to validate or to predict health risk status with collected personal data such as clinical measurements or genomic data, it is important to have a well-established profile of diseases. The primary effort of this work was to find genomic evidence relevant to coronary artery disease. Two major methods of genomic analysis, gene expression profiling and GWAS on gene expression, were performed to dissect transcriptional and genotypic fingerprints of coronary artery disease. Blood-informative transcriptional Axes that can be described by 10 covariating transcripts per each Axis were utilized as a crucial measure of gene expression analysis. This study of the relationship between gene expression variation and various measurements of coronary artery disease delivered compelling results showing strong association between two transcriptional Axes and incident of myocardial infarction. 244 transcripts closely correlated with death by cardiovascular disease related events were also showing clear association with those two transcriptional Axes. These results suggest potential transcripts for use in risk prediction for the advent of myocardial infarction and cardiac death.
    URI
    http://hdl.handle.net/1853/51769
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Biology Theses and Dissertations [437]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology