• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probabilistic Calibration of a Damage Rock Mechanics Model

    Thumbnail
    View/Open
    2014_MedinaCetina_Arson_GéoLett.pdf (504.7Kb)
    Date
    2014-01
    Author
    Medina-Cetina, Zenon
    Arson, Chloé
    Metadata
    Show full item record
    Abstract
    Current practice in the calibration of damage models requires downscaling the effects of experimental observations from macro/meso to micro. This process introduces uncertainty that is seldom quantified to reflect the expert’s confidence in the model predictions. A probabilistic calibration methodology can be introduced to overcome this problem. This paper shows a case study based on a damage rock mechanics model and triaxial experimental data on sandstone, where this approach is implemented to illustrate the impact of varying states of evidence (i.e. model complexity, experimental observations and expert’s judgement) on the model predictions. The probabilistic calibration method relies on the use of the Bayesian paradigm to assimilate experimental observations into the probabilistic definition of the model parameters. Results of this approach can be encapsulated into a single probability distribution or posterior, which is later used to assess the model performance. The proposed approach shows the potential to improve current practice in risk analysis since it allows tracing of changes of the model performance for varying evidence conditions in damage-sensitive geostructures such as nuclear waste disposals, landfills, geothermal wells and unconventional oil and gas formations, among others.
    URI
    http://hdl.handle.net/1853/51988
    Collections
    • School of Civil and Environmental Engineering Publications and Presentations [109]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology