• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advanced Transport Protocols for Next Generation Heterogeneous Wireless Network Architectures

    Thumbnail
    View/Open
    akan_ozgur_b_200405_phd.pdf (3.357Mb)
    Date
    2004-04-12
    Author
    Akan, Ozgur Baris
    Metadata
    Show full item record
    Abstract
    The revolutionary advances in the wireless communication technologies are inspiring the researchers to envision the next generation wireless networking architectures, i.e., Next Generation Wireless Internet (NGWI), InterPlaNetary (IPN) Internet, and Wireless Sensor Networks (WSN). There exist significant technological challenges for the realization of these envisioned next generation network architectures. NGWI will be the convergence of the Internet and heterogeneous wireless architectures, which have diverse characteristics and hence pose different sets of research challenges, to achieve anywhere, anytime seamless service to the mobile users. Similarly, the unique characteristics and challenges posed by deep space communications call for novel networking protocols to realize the IPN Internet objective. Furthermore, in order to realize the potential gains of WSN, it is imperative that communication challenges imposed by resource constraints of sensor nodes must be efficiently addressed with novel solutions tailored to the WSN paradigm. The objective of this research is to develop new advanced transport protocols for reliable data transport and real-time multimedia delivery in the next generation heterogeneous wireless network architectures. More specifically, the analytical rate control (ARC) protocol for real-time multimedia delivery is first proposed for wired/wireless hybrid networks. Next, a new rate control scheme (RCS) is proposed to achieve high throughput performance and fairness for real-time multimedia traffic over the satellite links. The unified adaptive transport layer (ATL) suite and its protocols for both reliable data transport (TCP-ATL) and real-time multimedia delivery (RCP-ATL) are introduced for the NGWI. A new reliable transport protocol for data transport in the IPN Internet (TP-Planet) is then proposed to address the unique challenges of the IPN Internet backbone links. A new integrated tranmission protocol (ITP) is then proposed for reliable data transport over multihop IPN Internet paths. Finally, the event-to-sink reliable transport (ESRT) protocol is proposed to achieve reliable event transport with minimum energy expenditure in WSN.
    URI
    http://hdl.handle.net/1853/5231
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology