• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Electrical and Computer Engineering (ECE)
    • Laboratory of Computational Computer Vision (LCCV)
    • Laboratory of Computational Computer Vision Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Localized Principal Component Analysis based Curve Evolution: A Divide and Conquer Approach

    Thumbnail
    View/Open
    localpca.pdf (612.7Kb)
    Date
    2011-11
    Author
    Appia, Vikram
    Ganapathy, Balaji
    Yezzi, Anthony
    Faber, Tracy
    Metadata
    Show full item record
    Abstract
    We propose a novel localized principal component analysis (PCA) based curve evolution approach which evolves the segmenting curve semi-locally within various target regions (divisions) in an image and then combines these locally accurate segmentation curves to obtain a global segmentation. The training data for our approach consists of training shapes and associated auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly correlated variations locally which may be rather independent of the variations in the distant parts of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data set. We then use a parametric model to implicitly represent each localized segmentation curve as a combination of the local shape priors obtained by representing the training shapes and the masks as a collection of signed distance functions. We also propose a parametric model to combine the locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we combine the evolution of these semi-local and global parameters to minimize an objective energy function. The resulting algorithm thus provides a globally accurate solution, which retains the local variations in shape. We present some results to illustrate how our approach performs better than the traditional approach with fully global PCA.
    URI
    http://hdl.handle.net/1853/52834
    Collections
    • Laboratory of Computational Computer Vision Publications [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology