• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fabric-based modeling of thermo-mechanical damage and healing around salt caverns

    Thumbnail
    View/Open
    2015_05_RapidCity_SaltMech_healing.pdf (16.13Mb)
    Date
    2015-05
    Author
    Zhu, Cheng
    Arson, Chloé
    Metadata
    Show full item record
    Abstract
    Geotechnical reservoirs and repositories in salt such as nuclear waste disposals, geothermal systems, and compressed air energy storage (CAES) are usually subject to complex thermo-mechanical conditions, leading to crack initiation, propagation, and rebonding. This work aims to model thermo-mechanical damage and healing around salt caverns, by enriching the framework of continuum damage mechanics with fabric descriptors. In order to infer the form of fabric tensors from microstructure observations, we carry out creep tests on granular salt under constant stress and humidity conditions. We simulate a stress path typical of CAES conditions at the material element level. The model presented in this paper is expected to improve the fundamental understanding of damage and healing in rocks at both macroscopic and microscopic levels, and the long-term evaluation of geological storage facilities.
    URI
    http://hdl.handle.net/1853/53197
    Collections
    • School of Civil and Environmental Engineering Publications and Presentations [108]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology