• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Method of evolving junctions: a new approach to path planning and optimal control

    Thumbnail
    View/Open
    LU-DISSERTATION-2014.pdf (9.581Mb)
    Date
    2014-04-07
    Author
    Lu, Jun
    Metadata
    Show full item record
    Abstract
    This thesis proposes a novel and efficient method (Method of Evolving Junctions) for solving optimal control problems with path constraints, and whose optimal paths are separable. A path is separable if it is the concatenation of finite number of subarcs that are optimal and either entirely constraint active or entirely constraint inactive. In the case when the subarcs can be computed efficiently, the search for the optimal path boils down to determining the junctions that connect those subarcs. In this way, the original infinite dimensional problem of finding the entire path is converted into a finite dimensional problem of determine the optimal junctions. The finite dimensional optimization problem is then solved by a recently developed global optimization strategy, intermittent diffusion. The idea is to add perturbations (noise) to the gradient flow intermittently, which essentially converts the ODE's (gradient descent) into a SDE's problem. It can be shown that the probability of finding the globally optimal path can be arbitrarily close to one. Comparing to existing methods, the method of evolving junctions is fundamentally faster and able to find the globally optimal path as well as a series of locally optimal paths. The efficiency of the algorithm will be demonstrated by solving path planning problems, more specifically, finding the optimal path in cluttered environments with static or dynamic obstacles.
    URI
    http://hdl.handle.net/1853/53428
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mathematics Theses and Dissertations [440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology