• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Managing signal and power integrity using power transmission lines and alternative signaling schemes

    Thumbnail
    View/Open
    TELIKEPALLI-DISSERTATION-2015.pdf (27.53Mb)
    Date
    2015-01-09
    Author
    Telikepalli, Satyanarayana
    Metadata
    Show full item record
    Abstract
    In this dissertation, a new signaling scheme known as Constant Voltage Power Transmission Line (CV-PTL) is presented to supply power to a digital I/O circuit. This signaling scheme provides power through a transmission line in place of a power plane while dynamically changing the impedance of the power delivery network to keep a constant voltage at the power pin of the IC. Consequently, this reduces the effects of return path discontinuities and can improve the quality of output signal by reducing power and ground bounce. Through theory, simulation, and measurements, we show that this new method can be used to reduce jitter and eye height with the proposed PDN methodology. In addition, the signaling scheme was extended to vertically-stacked 3D integrated circuits (3D ICs). It is known that power supply noise worsens as one goes higher up in the stack of dies due to increased interconnect inductance. However, by utilizing the CV-PTL concept in the PDN design of a 3-layer 3DIC system, the circuit showed considerable improvement in power supply noise and peak-to-peak jitter as compared to the conventional design approach. In addition to signal and power integrity of these signaling schemes, the noise coupling between digital and RF components is also investigated. A simple design for mitigating the coupling of power supply noise in mixed-signal electronics is presented. Currently used methods, such as electromagnetic bandgap structures have been shown to exhibit excellent noise isolation characteristics, and are a popular area of research in this area. However, these structures can pose difficulties for signal integrity. The proposed method extends the previous power transmission line work to address both the power supply noise generation and isolation. Test vehicles using these proposed methods, as well as using an EBG structure were fabricated and tested with regards to power supply noise, jitter, and noise isolation. The proposed methods show significant improvements in almost all performance metrics as compared to EBG. Finally, this dissertation discusses the effect of implementing a power transmission line in a power distribution network composed of a switching regulator and a voltage regulator module. The DC conductor losses of the PTL can not only affect power efficiency of the entire system, but can also affect the proper operation of the linear regulator module when supporting large currents. Consequently, recommendations are made on the design of the PTL to ensure proper operation and efficiency.
    URI
    http://hdl.handle.net/1853/53463
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Electrical and Computer Engineering Theses and Dissertations [3127]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology