• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Residual life prediction and degradation-based control of multi-component systems

    Thumbnail
    View/Open
    HAO-DISSERTATION-2015.pdf (2.630Mb)
    Date
    2015-03-11
    Author
    Hao, Li
    Metadata
    Show full item record
    Abstract
    The condition monitoring of multi-component systems utilizes multiple sensors to capture the functional condition of the systems and allows the sensor information to be used to reason about the health information of the systems or components. Chapter 3 considers the situation when sensor signals capture unknown mixtures of component signals and proposes a two-stage vibration-based methodology to identify component degradation signals from mixed sensor signals in order to predict component-level residual lives. Specifically, we are interested in modeling the degradation of systems that consist of two or more identical components operating under similar conditions. Chapter 4 focuses on the interactive relationship between tool wear (component degradation) and product quality degradation (sensor information) that widely exists in multistage manufacturing processes and proposes a high-dimensional stochastic differential equation model to capture the interaction relationship. Then, real-time quality measurements are incorporated to online predict the residual life of the system. Chapter 5 develops a strategy of dynamic workload adjustment for parallel multi-component systems in order to control the degradation processes and failure times of individual components, for the purpose of preventing the overlap of component failures. This chapter opens a new research direction that focuses on the active control of degradation rather than only the modeling part.
    URI
    http://hdl.handle.net/1853/53527
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology