• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A quantitative, model-driven approach to technology selection and development through epistemic uncertainty reduction

    Thumbnail
    View/Open
    GATIAN-DISSERTATION-2015.pdf (26.53Mb)
    Date
    2015-04-02
    Author
    Gatian, Katherine N.
    Metadata
    Show full item record
    Abstract
    When aggressive aircraft performance goals are set, he integration of new, advanced technologies into next generation aircraft concepts is required to bridge the gap between current capabilities and required capabilities. A large number of technologies exists that can be pursued, and only a subset may practically be selected to reach the chosen objectives. Additionally, the appropriate numerical and physical experimentation must be identified to further develop the selected technologies. These decisions must be made under a large amount of uncertainty because developing technologies introduce phenomena that have not been previously characterized. Traditionally, technology selection decisions are made based on deterministic performance assessments that do not capture the uncertainty of the technology impacts. Model-driven environments and new, advanced uncertainty quantification techniques provide the ability to characterize technology impact uncertainties and pinpoint how they are driving the system performance, which will aid technology selection decisions. Moreover, the probabilistic assessments can be used to plan experimentation that facilitates uncertainty reduction by targeting uncertainty sources with large performance impacts. The thesis formulates and implements a process that allows for risk-informed decision making throughout technology development. It focuses on quantifying technology readiness risk and performance risk by synthesizing quantitative, probabilistic performance information with qualitative readiness assessments. The Quantitative Uncertainty Modeling, Management, and Mitigation (QuantUM3) methodology was tested through the use of an environmentally-motivated aircraft design case study based upon NASAs Environmentally Responsible Aviation (ERA) technology development program. A physics-based aircraft design environment was created that has the ability to provide quantitative system-level performance assessments and was employed to model the technology impacts as probability distributions to facilitate the development of an overall process required to enable risk-informed technology and experimentation decisions. The outcome of the experimental e orts was a detailed outline of the entire methodology and a confirmation that the methodology enables risk-informed technology development decisions with respect to both readiness risk and performance risk. Furthermore, a new process for communicating technology readiness through morphological analysis was created as well as an experiment design process that utilizes the readiness information and quantitative uncertainty analysis to simultaneously increase readiness and decrease technology performance uncertainty.
    URI
    http://hdl.handle.net/1853/53636
    Collections
    • Aerospace Systems Design Laboratory Theses and Dissertations [249]
    • Georgia Tech Theses and Dissertations [23877]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology