• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Computational Perception & Robotics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Planning Under Uncertainty in the Continuous Domain: A Generalized Belief Space Approach

    Thumbnail
    View/Open
    Indelman14icra_a.pdf (461.9Kb)
    Date
    2014
    Author
    Indelman, Vadim
    Carlone, Luca
    Dellaert, Frank
    Metadata
    Show full item record
    Abstract
    This work investigates the problem of planning under uncertainty, with application to mobile robotics. We propose a probabilistic framework in which the robot bases its decisions on the generalized belief , which is a probabilistic description of its own state and of external variables of interest. The approach naturally leads to a dual-layer architecture: an inner estimation layer, which performs inference to predict the outcome of possible decisions, and an outer decisional layer which is in charge of deciding the best action to undertake. The approach does not discretize the state or control space, and allows planning in continuous domain. Moreover, it allows to relax the assumption of maximum likelihood observations: predicted measurements are treated as random variables and are not considered as given. Experimental results show that our planning approach produces smooth trajectories while maintaining uncertainty within reasonable bounds.
    URI
    http://hdl.handle.net/1853/53725
    Collections
    • Computational Perception & Robotics [213]
    • Computational Perception & Robotics Publications [213]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology