• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Formal verification of control software

    Thumbnail
    View/Open
    JOBREDEAUX-DISSERTATION-2015.pdf (1.067Mb)
    Date
    2015-05-15
    Author
    Jobredeaux, Romain J.
    Metadata
    Show full item record
    Abstract
    In a context of heightened requirements for safety-critical embedded systems and ever-increasing costs of verification and validation, this research proposes to advance the state of formal analysis for control software. Formal methods are a field of computer science that uses mathematical techniques and formalisms to rigorously analyze the behavior of programs. This research develops a framework and tools to express and prove high level properties of control law implementations. One goal is to bridge the gap between control theory and computer science. An annotation language is extended with symbols and axioms to describe control-related concepts at the code level. Libraries of theorems, along with their proofs, are developed to enable an interactive proof assistant to verify control-related properties. Through integration in a prototype tool, the process of verification is made automatic, and applied to several example systems.In a context of heightened requirements for safety-critical embedded systems and ever-increasing costs of verification and validation, this research proposes to advance the state of formal analysis for control software. Formal methods are a field of computer science that uses mathematical techniques and formalisms to rigorously analyze the behavior of programs. This research develops a framework and tools to express and prove high level properties of control law implementations. One goal is to bridge the gap between control theory and computer science. An annotation language is extended with symbols and axioms to describe control-related concepts at the code level. Libraries of theorems, along with their proofs, are developed to enable an interactive proof assistant to verify control-related properties. Through integration in a prototype tool, the process of verification is made automatic, and applied to several example systems.
    URI
    http://hdl.handle.net/1853/53841
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Aerospace Engineering Theses and Dissertations [1440]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology