• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sparse coding models of neural response in the primary visual cortex

    Thumbnail
    View/Open
    ZHU-DISSERTATION-2015.pdf (4.088Mb)
    Date
    2015-05-14
    Author
    Zhu, Mengchen
    Metadata
    Show full item record
    Abstract
    Sparse coding is an influential unsupervised learning approach proposed as a theoretical model of the encoding process in the primary visual cortex (V1). While sparse coding has been successful in explaining classical receptive field properties of simple cells, it was unclear whether it can account for more complex response properties in a variety of cell types. In this dissertation, we demonstrate that sparse coding and its variants are consistent with key aspects of neural response in V1, including many contextual and nonlinear effects, a number of inhibitory interneuron properties, as well as the variance and correlation distributions in the population response. The results suggest that important response properties in V1 can be interpreted as emergent effects of a neural population efficiently representing the statistical structures of natural scenes under resource constraints. Based on the models, we make predictions of the circuit structure and response properties in V1 that can be verified by future experiments.
    URI
    http://hdl.handle.net/1853/53868
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • Department of Biomedical Engineering Theses and Dissertations [509]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology