Show simple item record

dc.contributor.advisorGangbo, Wilfrid
dc.contributor.authorAwi, Romeo Olivier
dc.date.accessioned2015-09-21T14:25:33Z
dc.date.available2015-09-21T14:25:33Z
dc.date.created2015-08
dc.date.issued2015-06-02
dc.date.submittedAugust 2015
dc.identifier.urihttp://hdl.handle.net/1853/53901
dc.description.abstractThis thesis is mainly concerned with problems in the areas of the Calculus of Variations and Partial Differential Equations (PDEs). The properties of the functional to minimize with respect to the given topology play an important role in the existence of minimizers of integral problems. We will introduce the important concepts of quasiconvexity and polyconvexity. Inspired by finite element methods from Numerical Analysis, we introduce a perturbed problem which has some surprising uniqueness properties.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectRelaxation
dc.subjectDuality
dc.subjectLack of compactness
dc.subjectEuler-lagrange equations and polar factorization
dc.titleMinimization problems involving polyconvex integrands
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentMathematics
thesis.degree.levelDoctoral
dc.contributor.committeeMemberde la Llave, Rafael
dc.contributor.committeeMemberLoss, Michael
dc.contributor.committeeMemberSwiech, Andrzej
dc.contributor.committeeMemberYavari, Arash
dc.date.updated2015-09-21T14:25:33Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record