• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A study of dispersion and combustion of particle clouds in post-detonation flows

    Thumbnail
    View/Open
    GOTTIPARTHI-DISSERTATION-2015.pdf (13.13Mb)
    Date
    2015-07-24
    Author
    Gottiparthi, Kalyana Chakravarthi
    Metadata
    Show full item record
    Abstract
    Augmentation of the impact of an explosive is routinely achieved by packing metal particles in the explosive charge. When detonated, the particles in the charge are ejected and dispersed. The ejecta influences the post-detonation combustion processes that bolster the blast wave and determines the total impact of the explosive. Thus, it is vital to understand the dispersal and the combustion of the particles in the post-detonation flow, and numerical simulations have been indispensable in developing important insights. Because of the accuracy of Eulerian-Lagrangian (EL) methods in capturing the particle interaction with the post-detonation mixing zone, EL methods have been preferred over Eulerian-Eulerian (EE) methods. However, in most cases, the number of particles in the flow renders simulations using an EL method unfeasible. To overcome this problem, a combined EE-EL approach is developed by coupling a massively parallel EL approach with an EE approach for granular flows. The overall simulation strategy is employed to simulate the interaction of ambient particle clouds with homogenous explosions and the dispersal of particles after detonation of heterogeneous explosives. Explosives packed with aluminum particles are also considered and the aluminum particle combustion in the post-detonation flow is simulated. The effect of particles, both reactive and inert, on the combustion processes is analyzed. The challenging task of solving for clouds of micron and sub-micron particles in complex post-detonation flows is successfully addressed in this thesis.
    URI
    http://hdl.handle.net/1853/53972
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Aerospace Engineering Theses and Dissertations [1409]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology