• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A distributed multi-level current modeling method for design analysis and optimization of permanent magnet electromechanical actuators

    Thumbnail
    View/Open
    LIM-DISSERTATION-2014.pdf (5.493Mb)
    Date
    2014-05-07
    Author
    Lim, Jung Youl
    Metadata
    Show full item record
    Abstract
    This thesis has been motivated by the growing needs for multi-degree of freedom (M-DOF) electromagnetic actuators capable of smooth and accurate multi-dimensional driving motions. Because high coercive rare-earth permanent-magnets (PMs) are widely available at low cost, their uses for developing compact, energy-efficient M-DOF actuators have been widely researched. To facilitate design analysis and optimization, this thesis research seeks to develop a general method based on distributed source models to characterize M-DOF PM-based actuators and optimize their designs to achieve high torque-to-weight performance with compact structures To achieve the above stated objective, a new method that is referred to here as distributed multi-level current (DMC) utilizes geometrically defined point sources has been developed to model electromagnetic components and phenomena, which include PMs, electromagnets (EMs), iron paths and induced eddy current. Unlike existing numerical methods (such as FEM, FDM, or MLM) which solve for the magnetic fields from Maxwell’s equations and boundary conditions, the DMC-based method develops closed-form solutions to the magnetic field and force problems on the basis of electromagnetic point currents in a multi-level structure while allowing trade-off between computational speed and accuracy. Since the multi-level currents can be directly defined at the geometrically decomposed volumes and surfaces of the components (such as electric conductors and magnetic materials) that make up of the electromagnetic system, the DMC model has been effectively incorporated in topology optimization to maximize the torque-to-weight ratio of an electromechanical actuator. To demonstrate the above advantages, the DMC optimization has been employed to optimize the several designs ranging from conventional single-axis actuators, 2-DOF linear-rotary motors to 3-DOF spherical motors. The DMC modeling method has been experimentally validated and compared against published data. While the DMC model offers an efficient means for the design analysis and optimization of electromechanical systems with improved computational accuracy and speed, it can be extended to a broad spectrum of emerging and creative applications involving electromagnetic systems.
    URI
    http://hdl.handle.net/1853/53990
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Mechanical Engineering Theses and Dissertations [3831]

    Related items

    Showing items related by title, author, creator and subject.

    • Characterization of Actuation and Fatigue Properties of Piezoelectric Composite Actuators 

      Webber, Kyle Grant (Georgia Institute of Technology, 2005-05-20)
      Epoxy composite laminated piezoelectric stress-enhanced actuators (ECLIPSE) have been developed for potential applications by the United States Air Force and others. This class of actuators offers several advantages over ...
    • Shear flow control using synthetic jet fluidic actuator technology 

      Glezer, Ari (Georgia Institute of Technology, 1999)
    • Automated garment manufacturing system using novel sensing and actuation 

      Book, Wayne John; Winck, Ryder C.; Killpack, Marc D.; Huggins, James D.; Dickerson, Stephen L.; Jayaraman, Sundaresan; Collins, Thomas R.; Prado, Ronald J. (Georgia Institute of Technology, 2010-07)
      Attempts to automate the sewing process of garment manufacture have employed substitutes for human guidance of fabric into somewhat conventional sewing machines. A new approach has been proposed and partially verified in ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology