• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of shear, elongation and phase separation in hollow fiber membrane spinning

    Thumbnail
    View/Open
    OH-DISSERTATION-2014.pdf (5.356Mb)
    Date
    2014-05-06
    Author
    Oh, Kyung Hee
    Metadata
    Show full item record
    Abstract
    The spinning process of hollow fiber membranes was investigated with regards to two fundamental phenomena: flow (shear and elongation) and phase separation. Quantitative analysis of phase separation kinetics of binary (polymer/solvent) and ternary (polymer/solvent/volatile co-solvent) polymer solution was carried out with a newly developed microfluidic device. The device enables visualization of in situ phase separation and structure formation in controlled vapor and liquid environments. Results from these studies indicated that there was a weak correlation between phase separation kinetics and macroscopic defect (macrovoid) formation. In addition, the effect of shear and elongation on membrane morphology was tested by performing fiber extrusion through microfluidic channels. It was found that the membrane morphology is dominated by different factors depending on the rate of deformation. At high shear rates typical of spinning processes, shear was found to induce macrovoid formation through normal stresses, while elongation suppressed macroscopic defect formation. Furthermore, draw resonance, one of the key instabilities that can occur during fiber spinning, was investigated. It was found that draw resonance occurs at aggressive elongation condition, and could be suppressed by enhanced phase separation kinetics. These results can be used as guidelines for predicting hollow fiber membrane spinnability.
    URI
    http://hdl.handle.net/1853/53992
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology