Show simple item record

dc.contributor.advisorSulchek, Todd
dc.contributor.authorPacheco, Patricia Marie
dc.date.accessioned2016-01-07T17:22:00Z
dc.date.available2016-01-07T17:22:00Z
dc.date.created2014-12
dc.date.issued2014-11-17
dc.date.submittedDecember 2014
dc.identifier.urihttp://hdl.handle.net/1853/54300
dc.description.abstractThe body’s humoral immune response plays a larger role in the body’s defenses beyond screening for invading pathogens. Modulation of this response is also vital for tissue regeneration, drug delivery, and vaccine development. The immune system operates within a complicated feedback loop and as such, altering the strength of the immune response can be approached from an engineering perspective. While a strong initial input can direct the response to either a pro- or anti-inflammatory bias, extreme responses can be deleterious, as in the case of allergic reactions or sepsis. Therefore, the objective of this thesis was to develop a novel biomaterials platform that can be used to alter the immune response in a tunable manner. Antibodies are not only the workhorses of the adaptive immune response but are also powerful immunomodulators through their Fc (constant fragment) regions. By coating microparticles with Fc ligands in variable surface densities, we were able to utilize the sensitivity of multivalent signaling to tune the response of the immune response. Microparticle size was also varied to decouple the effects of physical versus biochemical signaling. The goal of this thesis was to analyze the effects of Fc coated particles on two major components of the humoral immune responses: macrophages and the complement system. We first looked at the mechanical response of macrophages through phagocytosis and found that both Fc density and microparticle size had significant impacts on macrophage phagocytosis. These results also provide a particle delivery “toolbox” for future applications. We then analyzed the downstream effects of Fc particles on macrophage phenotype and on phenotype plasticity. This showed that the addition of Fc particles lead to increased production of TNFα and IL-12 and inverted the response of LPS treated macrophages. Finally, we applied our particles to activate the complement system, an often overlooked cascade of serum protein activation that results in bacterial cell lysis. Cleaved components of the complement system are also powerful chemokines and can act as a vaccine adjuvant. Fc density on particles played a large role in complement system activation, both through the classical and alternative pathway, as it lead to a binary response for smaller particles and a tunable response for larger particles. We then applied these results to create a novel form of antibiotic by using Fc particles to direct complement-mediated bacterial cytotoxicity. The use of immune activation by Fc particles was also applied to better understand and improve the tuberculosis vaccine. Our findings are significant to the biomaterials and immunology fields as we showed that Fc microparticles can generally be used to alter the immune response in a tunable manner for a broad range of applications, as well answering fundamental immunology questions.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectFc
dc.subjectMacrophages
dc.subjectComplement system
dc.subjectMicro- and nanoparticles
dc.subjectBiomaterials
dc.subjectImmunoengineering
dc.subjectTuberculosis
dc.titleFc coated micro/nanoparticles for humoral immune system modulation
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentMechanical Engineering
thesis.degree.levelDoctoral
dc.contributor.committeeMemberBabensee, Julia
dc.contributor.committeeMemberChampion, Julie
dc.contributor.committeeMemberGarcía, Andrés J.
dc.contributor.committeeMemberWhite, David
dc.date.updated2016-01-07T17:22:00Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record