• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Direct-fired heat pump for multi-pass water heating using microchannel heat and mass exchangers

    Thumbnail
    View/Open
    KEINATH-DISSERTATION-2015.pdf (4.538Mb)
    Date
    2015-08-04
    Author
    Keinath, Christopher Mahlo
    Metadata
    Show full item record
    Abstract
    Absorption heat pump water heaters offer improved performance compared to conventional direct-fired water heaters, with the potential for coefficients of performance well in excess of 1. A primary energy usage comparison with electric heat pumps shows that absorption systems can be competitive with current technology. However, the implementation of these systems in the residential and light commercial market has not been practical for several reasons, including a limited knowledgebase on absorption systems for this application and the lack of compact and economically viable heat and mass exchangers. An improved understanding of the coupled heat and mass transfer processes in thermally driven absorption systems to be used as heat pump water heaters was obtained over the course of this study. In addition, microchannel heat and mass exchangers that enable such compact gas-fired heat pump water heaters were developed and tested. Performance at design and off-design conditions over a range of water and ambient temperatures was simulated in detail with a system-level model developed for this purpose. The system-level model was coupled with a water-tank model to investigate several water heating scenarios including a cold start, response to a medium sized draw and response to stand-by losses. Heat and mass exchangers were designed using component-level heat and mass transfer models. The heat and mass exchangers were first installed and evaluated on a breadboard test facility. Insights from these experiments were then used to design and fabricate a monolithic unit integrating several of the microchannel heat and mass exchangers, coupled with a gas-fired desorber heat exchanger to yield a stand-alone water heater prototype. The performance of the prototype was investigated over a range of water and ambient temperatures. A comparison of results was performed to investigate the deviation between model predictions and experimental values. A refined model was developed that more accurately predicted experimental results. Energy-use and cost analyses were performed and showed the potentially significant energy savings of thermally driven heat pump water heaters.
    URI
    http://hdl.handle.net/1853/54330
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Mechanical Engineering Theses and Dissertations [3831]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology