• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physics-based reinforcement learning for autonomous manipulation

    Thumbnail
    View/Open
    SCHOLZ-DISSERTATION-2015.pdf (18.51Mb)
    Date
    2015-08-21
    Author
    Scholz, Jonathan
    Metadata
    Show full item record
    Abstract
    With recent research advances, the dream of bringing domestic robots into our everyday lives has become more plausible than ever. Domestic robotics has grown dramatically in the past decade, with applications ranging from house cleaning to food service to health care. To date, the majority of the planning and control machinery for these systems are carefully designed by human engineers. A large portion of this effort goes into selecting the appropriate models and control techniques for each application, and these skills take years to master. Relieving the burden on human experts is therefore a central challenge for bringing robot technology to the masses. This work addresses this challenge by introducing a physics engine as a model space for an autonomous robot, and defining procedures for enabling robots to decide when and how to learn these models. We also present an appropriate space of motor controllers for these models, and introduce ways to intelligently select when to use each controller based on the estimated model parameters. We integrate these components into a framework called Physics-Based Reinforcement Learning, which features a stochastic physics engine as the core model structure. Together these methods enable a robot to adapt to unfamiliar environments without human intervention. The central focus of this thesis is on fast online model learning for objects with under-specified dynamics. We develop our approach across a diverse range of domestic tasks, starting with a simple table-top manipulation task, followed by a mobile manipulation task involving a single utility cart, and finally an open-ended navigation task with multiple obstacles impeding robot progress. We also present simulation results illustrating the efficiency of our method compared to existing approaches in the learning literature.
    URI
    http://hdl.handle.net/1853/54366
    Collections
    • College of Computing Theses and Dissertations [1071]
    • Georgia Tech Theses and Dissertations [22401]
    • IRIM Theses and Dissertations [105]
    • School of Interactive Computing Theses and Dissertations [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology