• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    TAR: Trajectory adaptation for recognition of robot tasks to improve teamwork

    Thumbnail
    View/Open
    NOVITZKY-DISSERTATION-2015.pdf (12.41Mb)
    Date
    2015-11-10
    Author
    Novitzky, Michael
    Metadata
    Show full item record
    Abstract
    One key to more effective cooperative interaction in a multi-robot team is the ability to understand the behavior and intent of other robots. Observed teammate action sequences can be learned to perform trajectory recognition which can be used to determine their current task. Previously, we have applied behavior histograms, hidden Markov models (HMMs), and conditional random fields (CRFs) to perform trajectory recognition as an approach to task monitoring in the absence of commu- nication. To demonstrate trajectory recognition of various autonomous vehicles, we used trajectory-based techniques for model generation and trajectory discrimination in experiments using actual data. In addition to recognition of trajectories, we in- troduced strategies, based on the honeybee’s waggle dance, in which cooperating autonomous teammates could leverage recognition during periods of communication loss. While the recognition methods were able to discriminate between the standard trajectories performed in a typical survey mission, there were inaccuracies and delays in identifying new trajectories after a transition had occurred. Inaccuracies in recog- nition lead to inefficiencies as cooperating teammates acted on incorrect data. We then introduce the Trajectory Adaptation for Recognition (TAR) framework which seeks to directly address difficulties in recognizing the trajectories of autonomous vehicles by modifying the trajectories they follow to perform them. Optimization techniques are used to modify the trajectories to increase the accuracy of recognition while also improving task objectives and maintaining vehicle dynamics. Experiments are performed which demonstrate that using trajectories optimized in this manner lead to improved recognition accuracy.
    URI
    http://hdl.handle.net/1853/54367
    Collections
    • College of Computing Theses and Dissertations [1071]
    • Georgia Tech Theses and Dissertations [22401]
    • IRIM Theses and Dissertations [105]
    • School of Interactive Computing Theses and Dissertations [106]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology