• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spatial and temporal ionospheric monitoring using broadband sferic measurements

    Thumbnail
    View/Open
    MCCORMICK-THESIS-2015.pdf (2.513Mb)
    Date
    2015-12-04
    Author
    McCormick, Jackson C.
    Metadata
    Show full item record
    Abstract
    The objective of this thesis is to use radio emissions from lightning, known as `radio atmospherics' or `sferics', to study the temporal and spatial variation of the lower ionosphere, a layer of ionized atmosphere beginning at $\sim$70 km altitude (D-region). Very Low Frequency (VLF, 3$-$30kHz) radio waves are a useful diagnostic for lower ionospheric monitoring due to their reflection from this region and global propagation. Traditionally, the lower ionosphere has been sensed using single-frequency VLF transmitters allowing for analysis of a single propagation path, as there are only a small number of transmitters. A lightning stroke, however, releases an intense amount of impulsive broadband VLF radio energy in the form of a sferic, which propagates through the Earth-ionosphere waveguide. Lightning is globally distributed and very frequent, so a sferic is therefore also a useful diagnostic of the D-region. This is true both for ambient or quiet conditions, and for ionospheric perturbations such as solar flare x-ray bursts. Lightning strokes effectively act as separate VLF transmitting sources. As such, they uniquely provide the ability to add a spatial component to ionospheric remote sensing, in addition to their broadband signature which cannot be achieved with man-made transmitters. We describe the methods of processing in detail. As an example, we analyze a solar flare during which time there is a significant change in magnitude and frequency content of sferics. This disturbance varies with distance from the source, as well as time. We describe the methods of processing in detail, and show results at Palmer Station, Antarctica for both a quiet and active solar day.
    URI
    http://hdl.handle.net/1853/54469
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Electrical and Computer Engineering Theses and Dissertations [3127]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology