• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A fully coupled damage-plasticity model for unsaturated geomaterials accounting for the ductile-brittle transition in drying clayey rocks

    Thumbnail
    View/Open
    2016_ijss_lepense_arson_pouya_accepted-1.pdf (383.8Kb)
    Date
    2016-04
    Author
    Le Pense, Solenn
    Arson, Chloé
    Pouya, Ahmad
    Metadata
    Show full item record
    Abstract
    This paper presents a hydro-mechanical constitutive model for clays accounting for damage-plasticity couplings. Specific features of unsaturated clays such as confining pressure and suction effects on elastic domain and plastic strains are accounted for. A double effective stress incorporating both the effect of suction and damage is defined based on thermodynamical considerations, which results in a unique stress variable being thermodynamically conjugated to elastic strain. Coupling between damage and plasticity phenomena is achieved by following the principle of strain equivalence and incorporating the double effective stress into plasticity equations. Two distinct criteria are defined for damage and plasticity, which can be activated either independently or simultaneously. Their formulation in terms of effective stress and suction allows them to evolve in the total stress space with suction and damage changes. This leads to a direct coupling between damage and plasticity and allows the model to capture the ductile/brittle behaviour transition occurring when clays are drying. Model predictions are compared with experimental data on Boom Clay, and the flexibility of the model is illustrated by presenting results of simulations in which either damage or plasticity dominates the coupled behaviour.
    URI
    http://hdl.handle.net/1853/54714
    Collections
    • School of Civil and Environmental Engineering Publications and Presentations [109]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology