Show simple item record

dc.contributor.authorMcInroe, Benjamin
dc.contributor.authorAstley, Henry C.
dc.contributor.authorGong, Chaohui
dc.contributor.authorKawano, Sandy M.
dc.contributor.authorSchiebel, Perrin E.
dc.contributor.authorRieser, Jennifer M.
dc.contributor.authorChoset, Howie
dc.contributor.authorBlob, Richard W.
dc.contributor.authorGoldman, Daniel I.
dc.date.accessioned2016-05-24T22:31:14Z
dc.date.available2016-05-24T22:31:14Z
dc.date.issued2016-05-27
dc.identifier.urihttp://hdl.handle.net/1853/54827
dc.descriptionComplete data and programs for the paper title above. Includes mudskipper data, robot control program, data and solidworks files, and simulation programs. Instructions are given in the appropriate subfolders of the data, and programs are commented.en_US
dc.description.abstractIn the evolutionary transition from an aquatic to a terrestrial environment, ancient vertebrates (e.g. early tetrapods) faced the challenges of terrestrial locomotion on flowable substrates (e.g. sand and mud) of variable stiffness and incline. While morphology and ranges of motion of appendages can be revealed in fossils, biological and robophysical studies of modern taxa demonstrate that movement on such substrates can be sensitive to small changes in appendage use. Using a biological model (the mudskipper), a physical model (a robot), granular drag measurements, and theoretical tools from geometric mechanics, we demonstrate how tail use can improve robustness to variable limb use and substrate conditions. We hypothesize that properly coordinated tail movements may have provided a substantial benefit for the earliest vertebrates to move on land.en_US
dc.description.sponsorshipNSF PoLS PHY-1205878, PHY-1150760, NSF CMMI-1361778, ARO grant W911NF-11-1-0514, the ARL MAST CTA, ARO Robotics CTA, NSF National Robotics Initiative IIS-1426655, NSF IOS-0517340, NSF IOS-0817794, GT UROP, GT PURA Travel Grant, Clemson University Wade Stackhouse Fellowship, NSF Award DBI-1300426, with additional support from The University of Tennessee, Knoxvilleen_US
dc.language.isoen_USen_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectTetrapoden_US
dc.subjectGranular mediaen_US
dc.subjectSubstrateen_US
dc.subjectYielden_US
dc.subjectRobophysicsen_US
dc.subjectGeometric mechanicsen_US
dc.titleTail use improves soft substrate performance in models of early vertebrate land locomotorsen_US
dc.typeDataseten_US
dc.contributor.corporatenameGeorgia Institute of Technology. School of Physicsen_US
dc.contributor.corporatenameGeorgia Institute of Technology. School of Biologyen_US
dc.contributor.corporatenameCarnegie-Mellon University. Robotics Institute,en_US
dc.contributor.corporatenameNational Institute for Mathematical and Biological Synthesisen_US
dc.contributor.corporatenameClemson University. Dept. of Biological Sciencesen_US
dc.embargo.termsnullen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record