• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Treatment strategy for composite tissue limb trauma

    Thumbnail
    View/Open
    LI-DISSERTATION-2015.pdf (6.081Mb)
    Date
    2015-03-11
    Author
    Li, Mon Tzu
    Metadata
    Show full item record
    Abstract
    A majority of all fractures in current US armed conflicts are open fractures, in which a soft tissue injury is sustained along with the bone fracture. Even with gold standard treatment, in which muscle flaps are used to cover bony defects, patients often do not regain normal function of their extremity, highlighting the necessity for tissue engineering strategies for this complex clinical problem. Due to a substantial amount of tissue damage and debridement treatment in composite injuries, a large volume of cells and extracellular matrix (ECM) proteins that are necessary for tissue healing are removed from the body. In the replacement of large volumes of tissue, nutrient transfer necessitates a vascular supply to maintain the viability of delivered cells. The objective of this project was to examine the regenerative potential of engineered matrix constructs and stem cells on composite bone & muscle defects. We hypothesized that stem cells delivered on engineered matrix constructs into the muscle defect will aid in muscle regeneration and promote bone healing, ultimately resulting in superior functional limb recovery. These studies established multiple preclinical platforms for testing tissue engineering strategies as well as models that can be used to gain insights on the healing of VML and composite VML/bone defects. From some of the insights gained on the vascularization of the defect sites, a vascular treatment strategy was tested within these platforms and shown to have varying results in the treatment of complex multi-tissue injuries.
    URI
    http://hdl.handle.net/1853/54837
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • Department of Biomedical Engineering Theses and Dissertations [509]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology