• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scalable and distributed constrained low rank approximations

    Thumbnail
    View/Open
    KANNAN-DISSERTATION-2016.pdf (1.043Mb)
    Date
    2016-04-15
    Author
    Kannan, Ramakrishnan
    Metadata
    Show full item record
    Abstract
    Low rank approximation is the problem of finding two low rank factors W and H such that the rank(WH) << rank(A) and A ≈ WH. These low rank factors W and H can be constrained for meaningful physical interpretation and referred as Constrained Low Rank Approximation (CLRA). Like most of the constrained optimization problem, performing CLRA can be computationally expensive than its unconstrained counterpart. A widely used CLRA is the Non-negative Matrix Factorization (NMF) which enforces non-negativity constraints in each of its low rank factors W and H. In this thesis, I focus on scalable/distributed CLRA algorithms for constraints such as boundedness and non-negativity for large real world matrices that includes text, High Definition (HD) video, social networks and recommender systems. First, I begin with the Bounded Matrix Low Rank Approximation (BMA) which imposes a lower and an upper bound on every element of the lower rank matrix. BMA is more challenging than NMF as it imposes bounds on the product WH rather than on each of the low rank factors W and H. For very large input matrices, we extend our BMA algorithm to Block BMA that can scale to a large number of processors. In applications, such as HD video, where the input matrix to be factored is extremely large, distributed computation is inevitable and the network communication becomes a major performance bottleneck. Towards this end, we propose a novel distributed Communication Avoiding NMF (CANMF) algorithm that communicates only the right low rank factor to its neighboring machine. Finally, a general distributed HPC- NMF framework that uses HPC techniques in communication intensive NMF operations and suitable for broader class of NMF algorithms.
    URI
    http://hdl.handle.net/1853/54962
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Computational Science and Engineering Theses and Dissertations [100]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology