• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    From spatio-temporal data to a weighted and lagged network between functional domains: Applications in climate and neuroscience

    Thumbnail
    View/Open
    FOUNTALIS-DISSERTATION-2016.pdf (19.22Mb)
    Date
    2016-04-11
    Author
    Fountalis, Ilias
    Metadata
    Show full item record
    Abstract
    Spatio-temporal data have become increasingly prevalent and important for both science and enterprises. Such data are typically embedded in a grid with a resolution larger than the true dimensionality of the underlying system. One major task is to identify the distinct semi-autonomous functional components of the spatio-temporal system and to infer their interconnections. In this thesis, we propose two methods that identify the functional components of a spatio-temporal system. Next, an edge inference process identifies the possibly lagged and weighted connections between the system’s components. The weight of an edge accounts for the magnitude of the interaction between two components; the lag associated with each edge accounts for the temporal ordering of these interactions. The first method, geo-Cluster, infers the spatial components as “areas”; spatially contiguous, non-overlapping, sets of grid cells satisfying a homogeneity constraint in terms of their average pair-wise cross-correlation. However, in real physical systems the underlying physical components might overlap. To this end we also propose δ-MAPS, a method that first identifies the epicenters of activity of the functional components of the system and then creates domains – spatially contiguous, possibly overlapping, sets of grid cells that satisfy the same homogeneity constraint. The proposed framework is applied in climate science and neuroscience. We show how these methods can be used to evaluate cutting edge climate models and identify lagged relationships between different climate regions. In the context of neuroscience, the method successfully identifies well-known “resting state networks” as well as a few areas forming the backbone of the functional cortical network. Finally, we contrast the proposed methods to dimensionality reduction techniques (e.g., clustering PCA/ICA) and show their limitations.
    URI
    http://hdl.handle.net/1853/55008
    Collections
    • Georgia Tech Theses and Dissertations [22401]
    • School of Computer Science Theses and Dissertations [79]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology