Show simple item record

dc.contributor.advisorUme, I. Charles
dc.contributor.authorKang, Sungbum
dc.date.accessioned2016-08-22T12:19:34Z
dc.date.available2016-08-22T12:19:34Z
dc.date.created2015-08
dc.date.issued2015-05-01
dc.date.submittedAugust 2015
dc.identifier.urihttp://hdl.handle.net/1853/55486
dc.description.abstractImprovements in chip package technologies have led to smaller package sizes and higher density circuitry that require superior reliability of chip packages. One of the crucial factors affecting the reliability of chip packages is warpage which primarily occurs during the reflow process. Because warpage may cause serious reliability problems such as solder bump failure and die cracking, warpage control has become a crucial task. Advancements in warpage measurement and prediction would provide important steps toward addressing this concern. Among the various warpage measurement techniques, fringe projection techniques (i.e., laser fringe projection (LFP) and digital fringe projection (DFP)) have emerged as recent trends due to their non-contact, full-field, and high-resolution (for small viewing area) capabilities for measuring the warpage of chip packages and boards (i.e., printed wiring boards (PWBs) and PWB assemblies). In this research, the measurement capabilities of a LFP system were improved by reducing its laser speckle noise and post-processing time, and a novel DFP system for measuring the warpage of painted and unpainted chip packages and boards was developed. Also, parametric studies were performed to predict the warpage of plastic ball grid array packages affected by four geometric factors. Finally, a guideline that manufacturing engineers can use for selecting the most suitable warpage measurement technique for their particular application was developed. The results of this study will help to improve the yields and reliability of chip packages and boards, reduce the manufacturing costs and time to market for chip packages and boards and ultimately reduce the prices of end-products.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectWarpage
dc.subjectDigital fringe projection
dc.subjectLaser fringe projection
dc.subjectDynamic digital fringe projection
dc.subjectUnpainted
dc.subjectChip package
dc.subjectPBGA
dc.subjectPWB
dc.subjectPWB assembly
dc.titleDigital fringe projection system for measuring warpage of painted and unpainted PBGAs and boards and FEA studies of PBGA warpage
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentMechanical Engineering
thesis.degree.levelDoctoral
dc.contributor.committeeMemberSitaraman, Suresh K.
dc.contributor.committeeMemberMichaels, Thomas E.
dc.contributor.committeeMemberShi, Jianjun
dc.contributor.committeeMemberMello, Michael
dc.date.updated2016-08-22T12:19:34Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record