• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bias correction of global circulation model outputs using artificial neural networks

    Thumbnail
    View/Open
    MOGHIM-DISSERTATION-2015.pdf (5.696Mb)
    Date
    2015-05-01
    Author
    Moghim, Sanaz
    Metadata
    Show full item record
    Abstract
    Climate studies and effective environmental management plans require unbiased climate datasets. This study develops a new bias correction approach using a three layer feedforward neural network to reduce the biases of climate variables (temperature and precipitation) over northern South America. Air and skin temperature, specific humidity, net longwave and shortwave radiation are used as inputs for the bias correction of temperature. Precipitation at lag zero, one, two, and three, and the standard deviation from 3 by 3 neighbors around the pixel of interest are the inputs into the ANN bias correction of precipitation. The data are provided by the Community Climate System Model (CCSM3). Results show that the trained ANN can markedly reduce the estimation error and improve the correlation and probabilistic structure of the bias-corrected variables for calibration and validation periods. The ANN outperforms linear regression (LR), which is used for comparison purposes. The ability of the regression models (linear and ANN) to regionalize the study domain is investigated by defining the minimum number of training pixels necessary to achieve a good level of bias correction performance over the entire domain. Results confirm that it is possible to identify regions in terms of physical features such as land cover, topography, and climatology over which the trained models at a few pixels can do well. The new approach saves computational demands, time, and memory usage and it can be used for other climate models efficiently.
    URI
    http://hdl.handle.net/1853/55487
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology