• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The impact of surface chemistry on stable semiconductor nanowire growth

    Thumbnail
    View/Open
    SIVARAM-DISSERTATION-2015.pdf (4.337Mb)
    Date
    2015-05-15
    Author
    Sivaram, Saujan Venkat
    Metadata
    Show full item record
    Abstract
    The vapor-liquid-solid (VLS) mechanism – whereby a liquid eutectic “catalyst” droplet collects precursor molecules (or atoms) from the vapor and directs crystallization of the solid nanowire – is a ubiquitous method for bottom-up nanowire synthesis. In this thesis, we use in situ infrared absorption spectroscopy to identify the previously unknown, yet critical, role of reactive surface intermediates on semiconductor nanowire synthesis. We quantitatively determine the surface coverage of hydrogen atoms by coupling operando measurements with a novel in situ surface titration and show these adsorbates are vital for stable Ge nanowire growth. In the second part of the thesis, we use in situ spectroscopy to explore the interplay between the supercooled AuGe catalyst state and surface chemistry. We find a strong correlation between loss of surface hydrogen and catalyst solidification. To unambiguously identify the influence of surface chemistry on the supercooled AuGe catalyst, we deliver atomic hydrogen to the nanowire sidewall, which prevents Au migration from the supercooled catalyst and preserves the liquid catalyst state in the absence of Ge2H6 flow. We conclude that solidification likely occurs via heterogeneous nucleation in the presence of solid particles near the trijunction region and present general strategies to maintain the supercooled catalyst state in other material systems. Our experiments identify a key chemical mechanism underlying nanowire growth via chemical vapor deposition and demonstrate that changes to surface bonding are critical to understand nanowire synthesis. The fundamental insights shown promise unprecedented control of nanowire structure and function by providing a chemical foundation for rational synthetic design.
    URI
    http://hdl.handle.net/1853/55509
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology