• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lithium perchlorate as a solid/liquid state oxygen source for molecular beam epitaxy

    Thumbnail
    View/Open
    TELLEKAMP-THESIS-2015.pdf (1.449Mb)
    Date
    2015-07-27
    Author
    Tellekamp, Marshall B.
    Metadata
    Show full item record
    Abstract
    In order to grow metastable transition metal suboxides, LiClO4 is theorized, designed, and tested as an alternative oxygen source for molecular beam epitaxy growth of oxide films. The material is found to decompose into a gas of both molecular and atomic oxygen beginning at approximately 250 °C, with an Arrhenius vapor pressure relationship across the measured range of less than 400 °C to avoid exothermic decomposition. A method for analyzing reaction rates is demonstrated using in situ Auger Electron Spectroscopy, and LiClO4 is compared to O2 showing a comparable reaction rate at four times lower growth pressure indicating the possibility for higher growth rates than are possible with O2. The decomposition kinetics of LiClO4 are discussed and solutions to instabilities are hypothesized for future studies on the material. A new style of MBE effusion cell for the evaporation of high vapor pressure sources is also presented, utilizing a two-zone heating system and aperture plate to resolve radiative heating issues common to materials evaporated close to room temperature. Discussion follows the design and testing of the cell, which exhibits acceptable long term stability over a 3 week testing period. These two sources are used, along with lithium, to grow thin films of multiple niobium oxidation states, from pure BCC niobium to LiNbO3. The most important films are high quality LiNbO2 which are grown using a method outlined in this work. The growth space is studied showing the preferential nucleation and growth of LiNbO2 at 950 – 1000 °C and a lithium flux of approximately 3×10-7 torr beam equivalent pressure.
    URI
    http://hdl.handle.net/1853/55544
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology