• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved growth, ordering, and characterization of sidewall epitaxial graphene nanoribbons

    Thumbnail
    View/Open
    NEVIUS-DISSERTATION-2016.pdf (38.39Mb)
    Date
    2016-06-03
    Author
    Nevius, Meredith Swegan
    Metadata
    Show full item record
    Abstract
    One material that has drawn much attention as a viable supplementary material to silicon is graphene, an atom-thick sheet of carbon in a hexagonal lattice. Graphene has many desirable qualities, including massless Dirac fermion charge carriers and an intrinsically two-dimensional structure. However, graphene is a semi-metal; it lacks a bandgap. Therefore, the purpose of this work is to explore a structured graphene geometry that is shown to produce a new form of semiconducting graphene seamlessly connected to metallic graphene nanoribbons. Nanoribbons are patterned and grown on silicon carbide with a combined top-down/bottom-up fabrication method that is compatible with current lithographic technology. Surface characterization measurements, including angle-resolved photoemission spectroscopy (ARPES), low-energy electron microscopy (LEEM), and photoemission electron microscopy (PEEM), are used to characterize ribbon samples and verify semiconducting and metallic properties of the structured graphene.
    URI
    http://hdl.handle.net/1853/55605
    Collections
    • School of Physics Theses and Dissertations [577]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology