Show simple item record

dc.contributor.advisorTetali, Prasad
dc.contributor.authorPanageas, Ioannis
dc.date.accessioned2016-08-22T12:23:09Z
dc.date.available2016-08-22T12:23:09Z
dc.date.created2016-08
dc.date.issued2016-07-22
dc.date.submittedAugust 2016
dc.identifier.urihttp://hdl.handle.net/1853/55617
dc.description.abstractThe aim of this thesis is the analysis of complex systems that appear in different research fields such as evolution, optimization and game theory, i.e., we focus on systems that describe the evolution of species, an algorithm which optimizes a smooth function defined in a convex domain or even the behavior of rational agents in potential games. The mathematical equations that describe the evolution of such systems are continuous or discrete dynamical systems (in particular they can be Markov chains). The challenging part in the analysis of these systems is that they live in high dimensional spaces, i.e., they exhibit many degrees of freedom. Understanding their geometry is the main goal to analyze their long-term behavior, speed of convergence/ mixing time (if convergence can be shown) and to perform average-case analysis. In particular, the stability of the equilibria (fixed points) of these systems plays a crucial role in our attempt to characterize their structure. However, the existence of many equilibria (even uncountably many) makes the analysis more difficult. Using mathematical tools from dynamical systems theory, Markov chains, game theory and non-convex optimization, we have a series of results: As far as evolution is concerned, (i) we show that mathematical models of haploid evolution imply the extinction of genetic diversity in the long term limit (for fixed fitness matrices) and moreover, (ii) we show that in case of diploid evolution the diversity usually persists, but it is NP-hard to predict it. Finally, (iii) we extend the results of haploid evolution when the fitness matrix changes per a Markov chain and we examine the role of mutation in the survival of the population. Furthermore, we focus on a wide class of Markov chains, inspired by evolution. Our key contribution is (iv) connecting the mixing time of these Markov chains and the geometry of the dynamical systems that guide them. Moreover, as far as game theory is concerned, (v) we propose a novel quantitative framework for analyzing the efficiency of potential games with many equilibria. Last but not least, using similar techniques, (vi) we show that gradient descent converges to local minima with probability one, even when the set of critical points is uncountable.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technology
dc.subjectDynamical systems
dc.subjectMarkov chains
dc.subjectPrice of anarchy
dc.subjectEvolution
dc.subjectConvergence
dc.subjectStability
dc.subjectManifold
dc.titleEvolutionary Markov chains, potential games and optimization under the lens of dynamical systems
dc.typeDissertation
dc.description.degreePh.D.
dc.contributor.departmentComputer Science
thesis.degree.levelDoctoral
dc.contributor.committeeMemberDey, Santanu
dc.contributor.committeeMemberMehta, Ruta
dc.contributor.committeeMemberPiliouras, Georgios
dc.contributor.committeeMemberVazirani, Vijay
dc.date.updated2016-08-22T12:23:09Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record