• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Natural competence and Type VI secretion in Vibrio cholerae

    Thumbnail
    View/Open
    BERNARDY-DISSERTATION-2016.pdf (4.106Mb)
    Date
    2016-07-22
    Author
    Bernardy, Eryn
    Metadata
    Show full item record
    Abstract
    The waterborne bacterium Vibrio cholerae, responsible for epidemics of cholera diarrhea, associates with the human gut and with chitinous surfaces in aquatic reservoirs. Prior studies of two clinical V. cholerae isolates revealed that natural competence for genetic transformation, a horizontal gene transfer mechanism, requires the chitin-induced TfoX regulator, and quorum sensing transcription factor HapR made at high cell density. To further understand this regulation, I helped identify, in a genetic screen, CytR, a new positive regulator required for competence gene expression and natural transformation. Recently, this complex regulatory network in V. cholerae was shown to also control a type VI secretion system (T6SS) that allows contact-dependent killing of other bacteria by injecting toxic proteins. I characterized a diverse set of sequenced V. cholerae isolates, revealing that transformation was rare in all isolates, while constitutive type VI killing was common among environmental but not clinical isolates. These latter results were consistent with a “pathoadaptive” model that tight regulation is beneficial in a host, while constitutive killing is advantageous in the environment. We hypothesized that two sequenced V. cholerae isolates with distinct T6SSs could generate structured populations from initially well-mixed conditions by killing competitors, but not kin. Indeed, when both isolates were rendered T6SS-, a well-mixed population was observed via fluorescence microscopy. In contrast, mutual killing generated clonal patches with each isolate segregating into distinct groups. Structural dynamics were recapitulated with three mathematical models and a cooperation model developed supports that this assortment promotes cooperation among kin. My work in V. cholerae has helped elucidate a complex regulatory network controlling multiple important phenotypes, diversity of these phenotypes among species members, and ecological consequences of antagonistic microbial interactions in the environment.
    URI
    http://hdl.handle.net/1853/55656
    Collections
    • School of Biology Theses and Dissertations [410]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology