• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Markov chains for weighted lattice structures

    Thumbnail
    View/Open
    BHAKTA-DISSERTATION-2016.pdf (896.4Kb)
    Author
    Bhakta, Prateek Jayeshbhai
    Metadata
    Show full item record
    Abstract
    Markov chains are an essential tool for sampling from large sets, and are ubiquitous across many scientific fields, including statistical physics, industrial engineering, and computer science. To be a useful tool for sampling, the number of steps needed for a Markov chain to converge approximately to the target probability distribution, also known as the mixing time, should be a small polynomial in n, the size of a state. We study problems that arise from the design and analysis of Markov chains that sample from configurations of lattice structures. Specifically, we will be interested in settings where each state is sampled with a non-uniform weight that depends on the structure of the configuration. These weighted lattice models arise naturally in many contexts, and are typically more difficult to analyze than their unweighted counterparts. Our focus will be on exploiting these weightings both to develop new efficient algorithms for sampling and to prove new mixing time bounds for existing Markov chains. First, we will present an efficient algorithm for sampling fixed rank elements from a graded poset, which includes sampling integer partitions of n as a special case. Then, we study the problem of sampling weighted perfect matchings on lattices using a natural Markov chain based on "rotations", and provide evidence towards understanding why this Markov chain has empirically been observed to converge slowly. Finally, we present and analyze a generalized version of the Schelling Segregation model, first proposed in 1971 by economist Thomas Schelling to explain possible causes of racial segregation in cities. We identify conditions under which segregation, or clustering, is likely or unlikely to occur. Our analysis techniques for all three problems are drawn from the interface of theoretical computer science with discrete mathematics and statistical physics.
    URI
    http://hdl.handle.net/1853/55689
    Collections
    • College of Computing Theses and Dissertations [1071]
    • Georgia Tech Theses and Dissertations [22398]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology