• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Neuro
    • GT Neuro Seminar Series
    • View Item
    •   SMARTech Home
    • Georgia Tech Neuro
    • GT Neuro Seminar Series
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying and Targeting Potential Biomarkers of Motor Dysfunction after Stroke using Non-invasive Neurostimulation and Neuroimaging

    Thumbnail
    View/Open
    borich.mp4 (418.7Mb)
    borich_videostream.html (962bytes)
    Date
    2016-09-19
    Author
    Borich, Michael
    Metadata
    Show full item record
    Abstract
    Up to 80% of stroke survivors have persistent motor impairment of the paretic arm that interferes with performing functional activities and limits activity participation. Stroke can trigger maladaptive changes in the strength and organization of structural and functional connections between brain regions. During paretic arm movement, there is exaggerated interhemispheric inhibition (IHI) from the contralesional hemisphere to the ipsilesional hemisphere. Exaggerated IHI creates an abnormal activity imbalance between brain hemispheres and this imbalance seems to be a primary contributor to motor impairment of the paretic arm after stroke. Although restoring the balance of activity between brain hemispheres has been a primary target of many novel rehabilitation strategies, limited progress has been made to improve arm motor function and reduce persistent disability for stroke survivors. In this talk, I will describe work in our lab using transcranial magnetic stimulation (TMS), a form of non-invasive brain stimulation, to both characterize and modulate cortical activity and connectivity in the brain after stroke. In the first part of my talk, I will describe how abnormal cortical excitability after stroke has been traditionally characterized using standalone TMS techniques. In the second part of my talk, I will discuss current findings from our lab using concurrent EEG recordings of TMS-evoked cortical activity that demonstrate abnormal interhemispheric interactions are present in the human brain after stroke and these abnormal interactions are related to arm motor impairment. Finally, I will introduce an upcoming project in our lab investigating the use of bifocal TMS to transiently modulate local cortical excitability and IHI in the human brain in an effort to restore the balance of activity between the hemispheres and improve arm motor function after stroke.
    URI
    http://hdl.handle.net/1853/55901
    Collections
    • GT Neuro Seminar Series [109]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology