• Login
    View Item 
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Unmanned Aerial Vehicle (UAV)
    • View Item
    •   SMARTech Home
    • Institute for Robotics and Intelligent Machines (IRIM)
    • IRIM Articles and Papers
    • Unmanned Aerial Vehicle (UAV)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vision-Based Closed-Loop Tracking Using Micro Air Vehicles

    Thumbnail
    View/Open
    closedLoopTrack.pdf (10.74Mb)
    Date
    2016
    Author
    Nakamura, Takuma
    Haviland, Stephen
    Bershadsky, Dmitry
    NodeIn, Daniel Magree
    Johnson, Eric N.
    Metadata
    Show full item record
    Abstract
    This paper describes the target detection and tracking architecture used by the Georgia Tech Aerial Robotics team for the American Helicopter Society (AHS) Micro Aerial Vehicle (MAV) challenge. The vision system described enables vision-aided navigation with additional abilities such as target detection and tracking all performed onboard the vehicles computer. The author suggests a robust target tracking method that does not solely depend on the image obtained from a camera, but also utilizes the other sensor outputs and runs a target location estimator. The machine learning based target identification method uses Haar-like classifiers to extract the target candidate points. The raw measurements are plugged into multiple Extended Kalman Filters (EKFs). The statistical test (Z-test) is used to bound the measurement, and solve the corresponding problem. Using Multiple EKFs allows us not only to optimally estimate the target location, but also to use the information as one of the criteria to evaluate the tracking performance. The MAV utilizes performance-based criteria that determine whether or not to initiate a maneuver such as hover or land over/on the target. The performance criteria are closed in the loop which allows the system to determine at any time whether or not to continue with the maneuver. For Vision-aided Inertial Navigation System (VINS), a corner Harris algorithm finds the feature points, and we track them using the statistical knowledge. The feature point locations are integrated in Bierman Thornton extended Kalman Filter (BTEKF) with Inertial Measurement Unit (IMU) and sonar sensor outputs to generate vehicle states: position, velocity, attitude, accelerometer and gyroscope biases. A 6- degrees-of-freedom quadrotor flight simulator is developed to test the suggested method. This paper provides the simulation results of the vision-based maneuvers: hovering over the target, and landing on the target. In addition to the simulation results, flight tests have been conducted to show and validate the system performance. The 500 gram Georgia Tech Quadrotor (GTQ)- Mini, was used for the flight tests. All processing is done onboard the vehicle and it is able to operate without human interaction. Both of the simulation and flight test results show the effectiveness of the suggested method. This system and vehicle were used for the AHS 2015 MAV Student Challenge where the GPS-denied closed-loop target search is required. The vehicle successfully found the ground target, and landed on the desired location. This paper shares the data obtained from the competition.
    URI
    http://hdl.handle.net/1853/55953
    Collections
    • Unmanned Aerial Vehicle (UAV) [118]
    • Unmanned Aerial Vehicle (UAV) Publications [104]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology