• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Neuro
    • GT Neuro Seminar Series
    • View Item
    •   SMARTech Home
    • Georgia Tech Neuro
    • GT Neuro Seminar Series
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biophysically Principled Modeling of Human MEG/EEG Signals Reveals Novel Mechanisms and Meaning of Brain Rhythms

    Thumbnail
    View/Open
    jones.mp4 (459.2Mb)
    jones_videostream.html (962bytes)
    Date
    2016-11-28
    Author
    Jones, Stephanie
    Metadata
    Show full item record
    Abstract
    Magneto- and Electro-encephalography (MEG/EEG) are among the most powerful technologies to non-invasively record large-scale activity from humans with fine temporal and spatial resolution. These signals provide reliable markers of healthy cognitive function and disease processes. However, a major limitation is the difficulty in inferring the underlying cellular and network level activity that generates the recorded data. A cellular level understanding is necessary to design targeted treatments, via pharmacology or brain stimulation (e.g. TMS, tDCS), when these signals are disrupted in neuropathology. In this talk, I will discuss the use of biophysically principled computational neural models of MEG/EEG signals as a viable means to link brain mechanisms to function. I will focus on low frequency beta rhythms (15-29Hz) prominent in MEG/EEG signals, which we have found predict sensory perception, are modulated with attention, and change with aging. I will describe how our MEG/EEG studies and model developments have led to novel hypothesis on the origin of beta rhythms and of their impact on sensory processing. Additionally, I will describe studies testing the model-derived predictions with invasive electrophysiological recordings in humans, monkeys and mice. In total, our integrated modeling and experimental approaches are providing unique insight into the mechanisms and meaning of human brain rhythms.
    URI
    http://hdl.handle.net/1853/56075
    Collections
    • GT Neuro Seminar Series [102]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology