• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding perceived quality through visual representations

    Thumbnail
    View/Open
    TEMEL-DISSERTATION-2016.pdf (14.19Mb)
    Date
    2016-10-25
    Author
    Temel, Dogancan
    Metadata
    Show full item record
    Abstract
    The formatting of images can be considered as an optimization problem, whose cost function is a quality assessment algorithm. There is a trade-off between bit budget per pixel and quality. To maximize the quality and minimize the bit budget, we need to measure the perceived quality. In this thesis, we focus on understanding perceived quality through visual representations that are based on visual system characteristics and color perception mechanisms. Specifically, we use the contrast sensitivity mechanisms in retinal ganglion cells and the suppression mechanisms in cortical neurons. We utilize color difference equations and color name distances to mimic pixel-wise color perception and a bio-inspired model to formulate center surround effects. Based on these formulations, we introduce two novel image quality estimators PerSIM and CSV, and a new image quality-assistance method BLeSS. We combine our findings from visual system and color perception with data-driven methods to generate visual representations and measure their quality. The majority of existing data-driven methods require subjective scores or degraded images. In contrast, we follow an unsupervised approach that only utilizes generic images. We introduce a novel unsupervised image quality estimator UNIQUE, and extend it with multiple models and layers to obtain MS-UNIQUE and DMS-UNIQUE. In addition to introducing quality estimators, we analyze the role of spatial pooling and boosting in image quality assessment.
    URI
    http://hdl.handle.net/1853/56289
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology