Solid State Quantum Mechanical Electron And Hole Wave Devices

View/ Open
Date
1/15/1991Author
Gaylord, Thomas K.
Brennan, Kevin F.
Glytsis, Elias N.
Metadata
Show full item recordAbstract
Solid state quantum mechanical electron or hole wave devices which are analogous to optical thin-film devices provide, among other things, energy selectivity for substantially ballistic electron or hole wave propagation in superlattice structures at energies above the superlattice potential energy barriers. Further, in accordance with the inventive method, the inventive devices may be designed by transforming existing optical thin-film design methods and existing optical interference filter designs into inventive semiconductor devices. This transformation from existing optical design methods and existing optical interference filter designs into semiconductor devices is performed for electron devices by mapping the optical phase index of refraction into a first solid state index of refraction for phase quantities which is proportional to the square root of the product of the electron kinetic energy and the electron effective mass and by mapping the optical amplitude index of refraction into a second solid state index of refraction for amplitude quantities which is proportional to the square root of the electron kinetic energy divided by the electron effective mass.
Collections
- Georgia Tech Patents [1761]