• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Civil and Environmental Engineering (CEE)
    • School of Civil and Environmental Engineering Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental Characterization of Microstructure Development for Calculating Fabric and Stiffness Tensors in Salt Rock

    Thumbnail
    View/Open
    2017_arma_salt_fabric_stiffness.pdf (686.1Kb)
    Date
    2017-06
    Author
    Xianda, Shen
    Arson, Chloé
    Ding, Jihui
    Chester, Frederick M.
    Chester, Judith S.
    Metadata
    Show full item record
    Abstract
    Uniaxial consolidation tests were conducted on reagent-grade granular salt in dry conditions at 150 C. 2Dmicroscopic images, parallel to the axis of consolidation, were obtained at several stages of progressive consolidation from 15% to 3% porosity. Microstructure image analyses were performed to obtain probability density functions (PDFs) of the area, solidity, coordination number, orientation, elongation and roundness of the grains, as well as the PDFs of the branch lengths, branch orientations and solid volume fraction, defined locally over polygons with edges matching grain centroids. It is found that sample deformation is mostly due to grain rearrangement and that upon consolidation, grains become less convex, and elongate in the direction perpendicular to the loading axis. Four fabric tensors were calculated to assess microstructure anisotropy induced by grain orientation, branch length orientation, grain solidity and local solid volume fraction. Fabric tensors were diagonal and orthogonal. Therefore, their product was used to define a global fabric tensor, which was introduced in the expression of the stiffness tensors. The constitutive parameters were calibrated against the consolidation tests. The approach paves the way to enrich continuum damage and healing mechanics model with fabric descriptors that can play the role of internal variables.
    URI
    http://hdl.handle.net/1853/58102
    Collections
    • School of Civil and Environmental Engineering Publications and Presentations [118]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology